Visual of a Line in 3D

Notes: In the picture,
$\mathbf{v}=\mathrm{a}$ vector parallel to the line
$r_{0}=\left\langle\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right\rangle$
$=$ a vector that points from the origin to some particular point ($\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}$) on the line.

Recall, any scale multiple of \mathbf{v} will be parallel to \mathbf{v}. So consider a vector \mathbf{a} that can be written as $\mathbf{a}=\mathrm{tv}$ (that is the vector \mathbf{a} in the picture).

Since \mathbf{a} is parallel to \mathbf{v} which is parallel to the line, if we add \mathbf{a} to $\mathbf{r}_{\mathbf{0}}$, then it will give another point on the line.
That is, if $r_{0}+\mathbf{a}=\langle x, y, z\rangle=r$, then (x, y, z) is also on the line.
ALL points on the line can be obtained by doing the same thing with different values of t. Thus, all points (x, y, z) on the line satisfy $r=\langle x, y, z\rangle=r_{0}+t v \quad$ (the vector form of the 3D line equation) for some scale multiple t.

Visual of a Plane in 3D

Notes: In the picture,
$\mathbf{n}=\mathrm{a}$ vector perpendicular to the plane (a normal vector)
$r_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$
$=$ a vector that points from the origin to some particular point ($\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}$) on the plane.

Let (x, y, z) be any other point on the plane.
Consider the vector that points from (x_{0}, y_{0}, z_{0}) to (x, y, z), which is $\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle$ (which is denoted by $r-r_{0}$ in the picture)

Key Observation: Since \mathbf{n} is perpendicular to the plane, that means that it must be perpendicular to $\mathbf{r}-\mathbf{r}_{0}$.
Thus,

$$
n \cdot\left(r-r_{0}\right)=0 \quad \text { (the vector form of the 3D plane equation) }
$$

